Role Evolution in Open Multi-Agent Systems as an Information Source for Trust

Ramón Hermoso Holger Billhardt Sascha Ossowski

Centre for Intelligent Information Technologies (CETINIA)
University Rey Juan Carlos
Madrid, Spain

ramon.hermoso@urjc.es, holger.billhardt@urjc.es, sascha.ossowski@urjc.es

15th of December 2009
COST-AT Meeting - Ayia Napa, Cyprus
Outline

1. Introduction
2. Organisational information
3. Evolution of Roles Taxonomies
 - Basics
 - Clustering algorithm
 - Mechanism flow
4. Experiments
 - OMAS simulation
 - Results
5. Conclusions
Open MAS

In Open MAS:

- Agents may join and leave the system at their will
- Agents’ individual design may be heterogeneous
- Interactions among agents are rarely repeated

So...

- Static prescription to enforce desired behaviours does not work
In Open MAS:

- Agents may join and leave the system at their will
- Agents’ individual design may be heterogeneous
- Interactions among agents are rarely repeated

So...

- Static prescription to enforce desired behaviours does not work
- Adaptive mechanisms should be endowed to obtain desired results
Organisational structures

- Organisational facilities to structure MAS: roles, hierarchies, norms, ...
- Most of the times are conceived as static design patterns that regulate agent’s behaviour
- Autonomous agents always have some freedom of choice (for next action to do)
- Organisational structures might be used to improve agent’s behaviour
Decision making processes in Open MAS

- How to choose a "good" counterpart to interact with
Decision making processes in Open MAS

- How to choose a "good" counterpart to interact with
- Supported on 3 different sources of information
Decision making processes in Open MAS

- How to choose a "good" counterpart to interact with
- Supported on 3 different sources of information
 1. past own experience
Decision making processes in Open MAS

- How to choose a "good" counterpart to interact with
- Supported on 3 different sources of information
 1. past own experience
 2. opinions from neighbours
Decision making processes in Open MAS

- How to choose a "good" counterpart to interact with
- Supported on 3 different sources of information
 1. past own experience
 2. opinions from neighbours
 3. other "organisational" information sources
Decision making processes in Open MAS

- How to choose a "good" counterpart to interact with
- Supported on 3 different sources of information
 1. past own experience
 2. opinions from neighbours
 3. other "organisational" information sources
Decision making processes in Open MAS

- How to choose a "good" counterpart to interact with
- Supported on 3 different sources of information
 1. past own experience
 2. opinions from neighbours
 3. other "organisational" information sources

Our work → how agents can use organisational structures to determine "good" partners (for them) to interact with
Trust models

1. Trust-related information helps agents to take decisions
Trust models

1. Trust-related information helps agents to take decisions
2. Trust is a non-definitive measure but a good hint
Trust models

1. Trust-related information helps agents to take decisions
2. Trust is a non-definitive measure but a good hint
3. Trust may lead agents to select actions (or agents with which perform actions)
Trust models

1. Trust-related information helps agents to take decisions
2. Trust is a non-definitive measure but a good hint
3. Trust may lead agents to select actions (or agents with which perform actions)
4. This information stored in agents can help other participants
Trust models

1. Trust-related information helps agents to take decisions
2. Trust is a non-definitive measure but a good hint
3. Trust may lead agents to select actions (or agents with which perform actions)
4. This information stored in agents can help other participants
5. To know what is good for you could be useful for others
Our approach

Main assumption:
- Information provided by agents in an Open MAS may be shared to help others
Our approach

1. Main assumption:
 - Information provided by agents in an Open MAS may be shared to help others

2. What to do:
 - Build organisational structures (role hierarchies) using information about trust among agents (TRUST NETWORK)
Our approach

1. Main assumption:
 - Information provided by agents in an Open MAS may be shared to help others

2. What to do:
 - Build organisational structures (role hierarchies) using information about trust among agents (TRUST NETWORK)

3. Why to do that:
 - Organisational structures should help agents to choose actions in Open MAS
 - Particularly, we examine role hierarchies to facilitate agent’s actions
Our approach

1. Main assumption:
 - Information provided by agents in an Open MAS may be shared to help others

2. What to do:
 - Build organisational structures (role hierarchies) using information about trust among agents (TRUST NETWORK)

3. Why to do that:
 - Organisational structures should help agents to choose actions in Open MAS
 - Particularly, we examine role hierarchies to facilitate agent’s actions

4. How to do that:
 - Using clustering algorithms to capture behavioural patterns in the set of agents
Our approach

1. Main assumption:
 - Information provided by agents in an Open MAS may be shared to help others

2. What to do:
 - Build organisational structures (role hierarchies) using information about trust among agents (TRUST NETWORK)

3. Why to do that:
 - Organisational structures should help agents to choose actions in Open MAS
 - Particularly, we examine role hierarchies to facilitate agent’s actions

4. How to do that:
 - Using clustering algorithms to capture behavioural patterns in the set of agents

5. When to do that:
 - Depends on system’s policies (out of this talk)
What do we propose?

- A mechanism that makes use of the information managed by agents’ trust models so as to create and evolve role taxonomies
- An appropriate role taxonomy should help agents to select agents with which interact
- evolution = modification (so far extension with new roles)
- New roles: more specialised and better in terms of expected utility
- Taxonomy evolution provides agents with more precise information, helping them to take better decisions
- We propose an adaptive mechanism that evolves role taxonomies by using a multidimensional clustering algorithm to capture behavioural patterns among agents
Our approach

- Open MAS +
Our approach

- Open MAS +
- Rational agents +
Our approach

- Open MAS +
- Rational agents +
- Role as an atomic piece of reasoning +
Our approach

- Open MAS +
- Rational agents +
- Role as an atomic piece of reasoning +
- An adaptive mechanism (based on trust measures) that evolves role taxonomies by using a multidimensional clustering algorithm to capture behavioural patterns among agents
Role definition

Let O be an OMAS and $\mathcal{A}g$ the set of agents participating in it. \mathcal{A} is the set of possible actions that the environment allows agents to carry out. Among those, we can distinguish a subset $S \in \mathcal{A}$ representing the set of service type interactions. Let \mathcal{R} be a set of role identifiers. Then, a role in an OMAS is defined as a pair $\langle r, \mathcal{E} \rangle$ where

- $r \in \mathcal{R}$ is the role identifier;
- $\mathcal{E} = \{s_1, ..., s_n\}$, where $s_i \in S$ is a finite set of (service type) interactions.
Semantics of a role \(\langle r, \mathcal{E} \rangle \equiv \) agents playing the role \(r \) are qualified providers of the interactions contained in \(\mathcal{E} \) in the sense that they are ”skilful” for providing the services.

We assume that all agents could provide any service, but only are qualified for a subset of them.
A role specialization taxonomy in an OMAS O is a tuple $\mathcal{RT} = (R, \succ_r)$ consisting of a set R of roles in O and a partial ordering \succ_r on R, such that:

1. $\exists r_{\text{root}} = (r_r, \mathcal{E}_r) \in R:\quad \mathcal{E}_r = S \land \forall r \in R : (r = r_{\text{root}} \lor r_{\text{root}} \succ_r r)$

2. $\forall (r_1, \mathcal{E}_{r_1}), (r_2, \mathcal{E}_{r_2}) \in R : (r_1, \mathcal{E}_{r_1}) \succ_r (r_2, \mathcal{E}_{r_2}) \iff \mathcal{E}_{r_2} \subseteq \mathcal{E}_{r_1} \land$

$$\forall s \in \mathcal{E}_{r_2} : \quad \frac{\sum_{a \in Ag} \sum_{b \in ag(r_2)} u_a(b, s)}{|ag(r_2)| \cdot |Ag|} > \frac{\sum_{a \in Ag} \sum_{b \in ag(r_1)} u_a(b, s)}{|ag(r_1)| \cdot |Ag|}$$
Organisational information IV

- $r_1, r_2 \in R$ then $r_1 \succ_r r_2$ iff. there is a subset of services from r_1 on which agents playing role r_2 perform better, on average, than agents playing role r_1

- Special case: a top role - the root of the taxonomy $\langle r_{\text{root}}, E_{\text{root}} \rangle$
 - Defined for all service-type interactions,
 - Does not specialise any other role, and
 - Every agent in an OMAS plays at least the top role

- Role taxonomies are publicly provided by the OMAS
 - Source of information to help agents to reason about what to do
 - Specially interesting for newcomers
Example

Role *Surgeon* could be created to fill the gap existing among the *Physicians* that are "*good*" - and accordingly trusted by others - at operating and those which do not reach a minimum level of quality to operate.
Outline

1. Introduction
2. Organisational information
3. Evolution of Roles Taxonomies
 - Basics
 - Clustering algorithm
 - Mechanism flow
4. Experiments
 - OMAS simulation
 - Results
5. Conclusions
Evolving role taxonomies

What do we propose?

- An **adaptive** mechanism that (re-)builds the structure of a role taxonomy by capturing behavioural patterns of agents within the OMAS, gathering trust estimations

- Adaptation \equiv creation of new roles that specialise existing ones
Evolving role taxonomies

Role Evolution in Open Multi-Agent Systems as an Information Source for Trust
Use clustering methods to capture behavioural patterns of agents providing service-type interactions.

Identify groups of agents that perform a set of tasks better than others and reflect such cases in form of a new role.

A trust space (TS) over which build clusters can be defined as:

$$TS_{r_k} = \{ \widehat{a} = (t_1, t_2, \ldots, t_n) | a \in A_g \text{ and } a \text{ enacts } r_k \}$$

The evolution of the role taxonomy depends on the group of agents in a given time within the OMAS.
Clustering algorithm

- K-Means
- Each execution is applied to each TS_{r_i} where $r_i \in RT$ (role taxonomy)
- The whole cluster represents a pattern of behaviour
- Cluster filtering:
 1. We do not want to create "bad-behavioured" roles
 2. At least there should be more than x agents
Outline

1. Introduction
2. Organisational information
3. Evolution of Roles Taxonomies
 - Basics
 - Clustering algorithm
 - Mechanism flow
4. Experiments
 - OMAS simulation
 - Results
5. Conclusions

Role Evolution in Open Multi-Agent Systems as an Information Source for Trust
An example:
The mechanism calculates the trust space for root role
K-means algorithm is then applied
If filters are passed a new role is created.
1. Useful for newcomers

2. Useful for long-term periods (how to realise something is changing in the society!)

3. Useful for contracting combined services (best roles for several interactions)
Role Evolution in Open Multi-Agent Systems as an Information Source for Trust

Outline

1. Introduction
2. Organisational information
3. Evolution of Roles Taxonomies
 - Basics
 - Clustering algorithm
 - Mechanism flow
4. Experiments
 - OMAS simulation
 - Results
5. Conclusions
OMAS simulation I

1. Agents capabilities for different interactions are built on a normal distribution
 - Mean: average behaviour
 - Standard deviation: changes in the behaviour

2. Heterogeneity on requesters’ utility functions:
 - TYPE A
 - TYPE B → noise

3. Changes on the population:
 - Every t time steps some agents join/leave
Role Evolution in Open Multi-Agent Systems as an Information Source for Trust
Test configuration

Scenarios:
- Heterogeneity
- Openness
(a) Overall utility (Mech. usage vs. No Mech. usage)

With mech. (75% type A)

Without mech. (75% type A)

With mech. (25% type A)

Without mech. (25% type A)
Role Evolution in Open Multi-Agent Systems as an Information Source for Trust

(b) Overall utility with 10% changes on users' population

Utility with mech. vs without mech.

Time

0,9
0,8
0,7
0,6
0,5
0,4
0,3
0,2
0,1
0
0
10
20
30
40
50
60

CETINIA
We have presented:

- An adaptive mechanism to evolve role taxonomies
- A "well-formed" taxonomy can help agents to take decisions
- Evolution is supported on how trusted the agents which play the roles are considered
- Clustering algorithm to capture common behavior
- Evolution consists of creating new roles.
Conclusions II

Ongoing work:

- Define when the mechanism should start to run
- Define the possibility of removing roles besides creating new ones
- Modifying existing roles entails:
 1. re-allocating agents that were enacting those roles
 2. defining policies to allocate agents when these join the system for the first time
THAT’S ALL

Thank you for your attention!
Any question?